Institute of Operating Systems and Computer Networks

Trust More, Serverless

SysTor'2019

Stefan Brenner, June 3rd, 2019

Technische Universität Braunschweig, Institute of Operating Systems and Computer Networks

Cloud Popularity Impacted by Security Issues

- Increasing popularity of clouds
- Cloud security challenges \rightarrow Hinder cloud adoption
- Vision: Trusted cloud
 - Enables currently impossible use cases
 - Usage of trusted execution technology

Usage of Trusted Execution Technology

- Creation of a Trusted Execution Environment (TEE)
 - Goal: Small sensitive compartments inside TEE
- Holistic approach (legacy applications)
 Large Trusted Computing Base (TCB)
- Application partitioning (tailored)
 - 😕 High porting effort

Software Design: Monolithic \neq Modern

- Modern modular architectures
 e.g. micro services, functions
 - Small independent components
 - Clearly defined interfaces
 - Selective scalability
 - Simpler and independent development

Software Design: Monolithic \neq Modern

- Modern modular architectures
 - e.g. micro services, functions

 - Small in Trusted FaaS
 Clearly c Selective Trusted serverless or Function-as-a-Service (FaaS) cloud!
 - Simpler and independent development

Trust More, Serverless

Background

- Intel SGX
- Serverless Computing
- Design & Implementation
- Evaluation
- Conclusion

Introduction Background Design & Implementation Evaluation Conclusion Intel SGX Serverless Computing

Trust More, Serverless

Background

- Intel SGX
- Serverless Computing
- Design & Implementation
- Evaluation
- Conclusion

Introduction Background Design & Implementation Evaluation Conclusion Intel SGX Serverless Computing

Intel Software Guard Extensions

- Intel Software Guard Extensions (SGX)
 - CPU instruction set extension for trusted execution
 - "Secure enclaves" inside user processes
 - Transparent memory encryption (with integrity)
 - Remote Attestation via Intel Attestation Service

Serverless and FaaS

Evolution of cloud computing

- 1. Infrastructure-as-a-Service (laaS)
- 2. Platform-as-a-Service (PaaS)
- 3. Function-as-a-Service (FaaS)
 - Single standalone functions \rightarrow Lambdas
 - Fine-grained accounting, no idle cost
 - Most maintenance done by provider

Trust More, Serverless

- Background
 - Intel SGX
 - Serverless Computing
- Design & Implementation
- Evaluation
- Conclusion

Platform Vision

- Basic Properties
 - Lambda inside enclave
 - Parallel (competing) Lambda execution
 - Resource efficiency
 - Transparent Lambda attestation

Challenges:

- Selection of suitable programming language and Lambda library support
- Design of a secure and efficient Lambda execution platform
- Transparent remote attestation of Lambdas

🔀 Native: sandbox?

▶ Native: sandbox?

V8 Isolate

Secure Serverless Computing Programming Language & Runtime

Google V8

Programming Language & Runtime

Programming Language & Runtime

Architecture

• JavaScript Runtime in enclave

- Lightweight JavaScript interpreter: Duktape
- Additional: Fast but large Google V8
- Lambdas executed in interpreter sandbox
- Secure Lambdas:
 - Signed Lambda bundles
 - Load and verify on demand

Trust Model

- How to establish trust into Lambdas?
 - 1. Signed Lambda is loaded
 - 2. Attester verifies enclave
 - 3. Attester verifies Lambda based on its signature
 - 4. Attester uploads TLS key
 - \Rightarrow Implicit attestation on every request

Trust More, Serverless

- Background
 - Intel SGX
 - Serverless Computing
- Design & Implementation
- Evaluation
- Conclusion

Evaluation Methodology and Trusted Computing Base

- Methodology
 - Clients issue TLS-encrypted requests to trusted Lambda platform
 - TCB, throughput and enclave memory footprint measurement

Evaluation Methodology and Trusted Computing Base

Methodology

- Clients issue TLS-encrypted requests to trusted Lambda platform
- TCB, throughput and enclave memory footprint measurement
- Trusted Computing Base
 - Google V8 TCB $_{7\times}$ larger than Duktape

	Duktape	V8
Interpreter	185,392	1,308,702
Environment	214,156	17,193,624
Platform	1,529	1,002
Sum	401,077	18,503,328

Performance

- Low overhead of secure Duktape (echo) روبنا Low overhead of secure Duktape (echo) لا يقق المحافظة than secure Duktape
- Secure Google V8 \approx 50% of baseline Secure Duktape only \approx 3%

(base64 and 3dcube are part of the letStream JavaScript benchmark suite)

Memory Footprint

- No excessive SGX paging due to lean memory footprint
- Secure Duktape \approx 38% lower memory footprint than secure Google V8

Secure Google V8 memory footprint

Trust More, Serverless

- Background
 - Intel SGX
 - Serverless Computing
- Design & Implementation
- Evaluation
- Conclusion

Conclusion

- Secure Lambda execution platform based on Intel SGX
- Execution of pure JavaScript Lambda inside SGX enclave
- Secure Duktape is much slower than secure Google V8
 - ... but requires significantly less memory
 - ...and comprises a much smaller TCB
 - \Rightarrow A price tag for transparent security in the FaaS cloud!
- \Rightarrow This project was funded by Intel in the *TFaaS project*!

